142 research outputs found

    Predicting food-web structure with metacommunity models

    Get PDF
    Synthesis Metacommunity theory aims to elucidate the relative influence of local and regional-scale processes in generating diversity patterns across the landscape. Metacommunity research has focused largely on assemblages of competing organisms within a single trophic level. Here, we test the ability of metacommunity models to predict the network structure of the aquatic food web found in the leaves of the northern pitcher plant Sarracenia purpurea. The species-sorting and patch-dynamics models most accurately reproduced nine food web properties, suggesting that local-scale interactions play an important role in structuring Sarracenia food webs. Our approach can be applied to any well-resolved food web for which data are available from multiple locations. The metacommunity framework explores the relative influence of local and regional-scale processes in generating diversity patterns across the landscape. Metacommunity models and empirical studies have focused mostly on assemblages of competing organisms within a single trophic level. Studies of multi-trophic metacommunities are predominantly restricted to simplified trophic motifs and rarely consider entire food webs. We tested the ability of the patch-dynamics, species-sorting, mass-effects, and neutral metacommunity models, as well as three hybrid models, to reproduce empirical patterns of food web structure and composition in the complex aquatic food web found in the northern pitcher plant Sarracenia purpurea. We used empirical data to determine regional species pools and estimate dispersal probabilities, simulated local food-web dynamics, dispersed species from regional pools into local food webs at rates based on the assumptions of each metacommunity model, and tested their relative fits to empirical data on food-web structure. The species-sorting and patch-dynamics models most accurately reproduced nine food web properties, suggesting that local-scale interactions were important in structuring Sarracenia food webs. However, differences in dispersal abilities were also important in models that accurately reproduced empirical food web properties. Although the models were tested using pitcher-plant food webs, the approach we have developed can be applied to any well-resolved food web for which data are available from multiple locations. © 2012 The Authors. Oikos © 2012 Nordic Society Oikos

    Sensitivity of codispersion to noise and error in ecological and environmental data

    Full text link
    Codispersion analysis is a new statistical method developed to assess spatial covariation between two spatial processes that may not be isotropic or stationary. Its application to anisotropic ecological datasets have provided new insights into mechanisms underlying observed patterns of species distributions and the relationship between individual species and underlying environmental gradients. However, the performance of the codispersion coefficient when there is noise or measurement error ("contamination") in the data has been addressed only theoretically. Here, we use Monte Carlo simulations and real datasets to investigate the sensitivity of codispersion to four types of contamination commonly seen in many real-world environmental and ecological studies. Three of these involved examining codispersion of a spatial dataset with a contaminated version of itself. The fourth examined differences in codisperson between plants and soil conditions, where the estimates of soil characteristics were based on complete or thinned datasets. In all cases, we found that estimates of codispersion were robust when contamination, such as data thinning, was relatively low (<15\%), but were sensitive to larger percentages of contamination. We also present a useful method for imputing missing spatial data and discuss several aspects of the codispersion coefficient when applied to noisy data to gain more insight about the performance of codispersion in practice.Comment: 20 pages, 14 figure

    Degradation of cognitive timing mechanisms in behavioural variant frontotemporal dementia.

    Get PDF
    The current study examined motor timing in frontotemporal dementia (FTD), which manifests as progressive deterioration in social, behavioural and cognitive functions. Twenty-patients fulfilling consensus clinical criteria for behavioural variant FTD (bvFTD), 11 patients fulfilling consensus clinical criteria for semantic-variant primary progressive aphasia (svPPA), four patients fulfilling criteria for nonfluent/agrammatic primary progressive aphasia (naPPA), eight patients fulfilling criteria for AlzheimerŚłs disease (AD), and 31 controls were assessed on both an externally- and self-paced finger-tapping task requiring maintenance of a regular, 1500 ms beat over 50 taps. Grey and white matter correlates of deficits in motor timing were examined using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI). bvFTD patients exhibited significant deficits in aspects of both externally- and self-paced tapping. Increased mean inter-response interval (faster than target tap time) in the self-paced task was associated with reduced grey matter volume in the cerebellum bilaterally, right middle temporal gyrus, and with increased axial diffusivity in the right superior longitudinal fasciculus, regions and tracts which have been suggested to be involved in a subcortical-cortical network of structures underlying timing abilities. This suggests that such structures can be affected in bvFTD, and that impaired motor timing may underlie some characteristics of the bvFTD phenotype

    Detecting Ecological Patterns Along Environmental Gradients: Alpine Treeline Ecotones

    Get PDF
    Everyone is familiar with that age-old adage: "a picture is worth a thousand words". Among ecologists, the word "picture" easily could be replaced with the word "pattern", although the significance remains the same: the pattern we observe in a single snapshot more than sums up what could be expressed if we tried to describe all the original events that led to the pattern. One particular class of patterns, spatial patterns, are the backbone of much contemporary ecological research. [...

    Species Diversity Associated with Foundation Species in Temperate and Tropical Forests

    Get PDF
    Foundation species define and structure ecological communities but are difficult to identify before they are declining. Yet, their defining role in ecosystems suggests they should be a high priority for protection and management while they are still common and abundant. We used comparative analyses of six large forest dynamics plots spanning a temperate-to-tropical gradient in the Western Hemisphere to identify statistical “fingerprints” of potential foundation species based on their size-frequency and abundance-diameter distributions, and their spatial association with five measures of diversity of associated woody plant species. Potential foundation species are outliers from the common “reverse-J” size-frequency distribution, and have negative effects on alpha diversity and positive effects on beta diversity at most spatial lags and directions. Potential foundation species also are more likely in temperate forests, but foundational species groups may occur in tropical forests. As foundation species (or species groups) decline, associated landscape-scale (beta) diversity is likely to decline along with them. Preservation of this component of biodiversity may be the most important consequence of protecting foundation species while they are still common

    Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples

    Get PDF
    Advances in the sequencing of DNA extracted from media such as soil and water offer huge opportunities for biodiversity monitoring and assessment, particularly where the collection or identification of whole organisms is impractical. However, there are myriad methods for the extraction, storage, amplification and sequencing of DNA from environmental samples. To help overcome potential biases that may impede the effective comparison of biodiversity data collected by different researchers, we propose a standardised set of procedures for use on different taxa and sample media, largely based on recent trends in their use. Our recommendations describe important steps for sample pre-processing and include the use of (a) Qiagen DNeasy PowerSoilÂź and PowerMaxÂź kits for extraction of DNA from soil, sediment, faeces and leaf litter; (b) DNeasy PowerSoilÂź for extraction of DNA from plant tissue; (c) DNeasy Blood and Tissue kits for extraction of DNA from animal tissue; (d) DNeasy Blood and Tissue kits for extraction of DNA from macroorganisms in water and ice; and (e) DNeasy PowerWaterÂź kits for extraction of DNA from microorganisms in water and ice. Based on key parameters, including the specificity and inclusivity of the primers for the target sequence, we recommend the use of the following primer pairs to amplify DNA for analysis by Illumina MiSeq DNA sequencing: (a) 515f and 806RB to target bacterial 16S rRNA genes (including regions V3 and V4); (b) #3 and #5RC to target eukaryote 18S rRNA genes (including regions V7 and V8); (c) #3 and #5RC are also recommended for the routine analysis of protist community DNA; (d) ITS6F and ITS7R to target the chromistan ITS1 internal transcribed spacer region; (e) S2F and S3R to target the ITS2 internal transcribed spacer in terrestrial plants; (f) fITS7 or gITS7, and ITS4 to target the fungal ITS2 region; (g) NS31 and AML2 to target glomeromycota 18S rRNA genes; and (h) mICOIintF and jgHCO2198 to target cytochrome c oxidase subunit I (COI) genes in animals. More research is currently required to confirm primers suitable for the selective amplification of DNA from specific vertebrate taxa such as fish. Combined, these recommendations represent a framework for efficient, comprehensive and robust DNA-based investigations of biodiversity, applicable to most taxa and ecosystems. The adoption of standardised protocols for biodiversity assessment and monitoring using DNA extracted from environmental samples will enable more informative comparisons among datasets, generating significant benefits for ecological science and biosecurity applications

    Using codispersion analysis to quantify and understand spatial patterns in species-environment relationships

    Get PDF
    ‱ The analysis of spatial patterns in species–environment relationships can provide new insights into the niche requirements and potential co-occurrence of species, but species abundance and environmental data are routinely collected at different spatial scales. Here, we investigate the use of codispersion analysis to measure and assess the scale, directionality and significance of complex relationships between plants and their environment in large forest plots. ‱ We applied codispersion analysis to both simulated and field data on spatially located tree species basal area and environmental variables. The significance of the observed bivariate spatial associations between the basal area of key species and underlying environmental variables was tested using three null models. ‱ Codispersion analysis reliably detected directionality (anisotropy) in bivariate species–environment relationships and identified relevant scales of effects. Null model-based significance tests applied to codispersion analyses of forest plot data enabled us to infer the extent to which environmental conditions, tree sizes and/or tree spatial positions underpinned the observed basal area–environment relationships, or whether relationships were a result of other unmeasured factors. ‱ Codispersion analysis, combined with appropriate null models, can be used to infer hypothesized ecological processes from spatial patterns, allowing us to start disentangling the possible drivers of plant species–environment relationships
    • 

    corecore